

Prepared for:
Department of Homeland Security

Suggestions for Simplifying the Common
Vulnerability and Exposures (CVE) Counting
Method

March 22, 2016

Version 1.0

This document is a product of the Homeland Security Systems Engineering and Development Institute (HSSEDI™).

ii

Abstract
Common Vulnerability and Exposures (CVE) is a dictionary of publicly known information

security vulnerabilities and exposures. An important part of CVE operations is vulnerability

counting. Counting is a complex process due to the increasing complexity in software design and

the significant growth in software vulnerabilities disclosed each year. In this paper,

simplifications to the CVE counting process are proposed, with the goal of increasing the rate of

issuance of CVE identification numbers to more closely match the increasing rate of disclosed

software vulnerabilities. Pros and cons for each suggested change are included.

Record of Changes

No. Date Reference
A=Add

M=Modify
D=Delete

Description of Change

1 3/21/2016 A Material consolidated into single

document

iv

Table of Contents

1 Purpose .. 1

2 Current CVE Counting Process ... 1

2.1 Definitions ... 1

2.2 Inclusion .. 2

2.2.1 Vulnerability Investigation .. 3

2.3 Vulnerability Categorization and Counting .. 4

2.3.1 Categorizing Vulnerabilities for Counting.. 4

2.3.2 Counting Vulnerabilities .. 4

2.4 Other Considerations ... 5

3 CVE Counting Simplification .. 5

3.1 Change 1: Vulnerability Definition .. 6

3.1.1 Current Definition ... 6

3.1.2 Current Process ... 6

3.1.3 Problem ... 6

3.1.4 Proposed Change .. 6

3.1.5 Proposed Process .. 6

3.1.6 Expected Impact... 7

3.2 Change 2: The Affected Product Must be Installable Software or an Installable Library 8

3.2.1 Current Definition ... 8

3.2.2 Current Process ... 8

3.2.3 Problem ... 8

3.2.4 Proposed Change .. 8

3.2.5 Proposed Process .. 8

3.2.6 Expected Impact... 9

3.3 Change 3: Using Affected Product to Decide How Many CVE IDs to Assign 9

3.3.1 Current Definition ... 9

3.3.2 Current Process ... 9

3.3.3 Problem ... 10

3.3.4 Proposed Change .. 10

3.3.5 Proposed Process .. 10

3.3.6 Expected Impact... 11

3.4 Change 4: Using Independently Fixable Vulnerabilities in Place of Vulnerability Type to
Decide How Many CVE IDs toAassign ... 11

3.4.1 Current Definition ... 11

3.4.2 Current Process ... 11

3.4.3 Problem ... 11

3.4.4 Proposed Change .. 12

3.4.5 New Process ... 12

3.4.6 Expected Impact... 12

Acronyms .. 13

References .. 14

vi

This page intentionally left blank

1 Purpose
This paper proposes changes to simplify the Common Vulnerability and Exposures (CVE)

counting process. Pros and cons for each suggested change are included, specifically addressing

what impact the changes will have on timeliness and quality of the CVE identification number

(CVE ID) assignment process and the resulting CVEs.

The nature and accuracy of the counting process underpins the value of a CVE. Correct counting

reduces the likelihood of duplicate CVE IDs being assigned to a single vulnerability. Also, some

reports of vulnerabilities may confuse or conflate multiple, separate software problems, and the

counting process differentiates between unique vulnerabilities.

2 Current CVE Counting Process
This section describes the definitions, inclusion rules, and processes that are currently used for

CVE counting decisions.

2.1 Definitions

The CVE program is valuable to stakeholders because it uniquely identifies vulnerabilities,

thereby establishing a dictionary of publicly known information security vulnerabilities and

exposures. Counting should be performed consistently across analysts and CVE Numbering

Authorities (CNAs). [1] Without consistency, the quality and utility of CVE will be reduced due

to misunderstandings regarding what is considered a vulnerability and why, which defeats the

purpose of the CVE program.

Vulnerability counting is the process by which CVE decides whether a reported vulnerability

represents a single vulnerability, multiple vulnerabilities, or is even a vulnerability at all. The

counting process is used to assign the correct number of CVE IDs to a disclosed vulnerability.

A vulnerability is a flaw or design oversight in software that could be used by an attacker to

gain unintended access to a system or network. CVE considers a flaw a vulnerability if it allows

an attacker to use it to violate a reasonable security policy for that system (this excludes entirely

“open” security policies in which all users are trusted, or where there is no consideration of risk

to the system).

The flaw or design oversight leading to a potential vulnerability is often referred to as a bug.

A configuration issue is where a purposeful customization in the behavior of software results in

an unintended state.

A codebase is a software component that is shared among products.

A software product is a collection of installable software distributed under a unique name by a

particular vendor or development project.

An executable file causes a computer to perform indicated tasks according to encoded

instructions, as opposed to a data file that must be parsed by a program to be meaningful.

2

A software version is a unique name for a particular revision of computer software. This

includes commit IDs and other versioning identifiers. Within the CVE process, the specific

version or versions affected by a vulnerability are key factors in the counting process. A

software package is a collection of separate, self-contained software components that are

distributed as a single, monolithic object.

A vulnerability is publicly known when the issue has been published or divulged publicly (or is

scheduled to be published by a researcher or vendor who has been in communication with the

CVE Team regarding the issue).

A product is publicly available when anyone can purchase or obtain legitimate access to it. This

includes freeware, shareware, open source, and commercial products.

The U.S. Information Technology (IT) Sector is defined by a set of functions performed by the

entities that comprise the sector. Those functions provide: a) IT products and services; b)

incident management capabilities; c) domain name resolution services; d) identity management

and associated trust support services; e) Internet-based content, information, and

communications services; and f) Internet routing, access, and connection services. [2]

An access vector or extent describes how a vulnerability may be exploited. Examples of this

include a local exploit (by having a presence on the system), a physical exploit (by having

physical access to the system), or a network-based exploit (where the vulnerability can be

exploited through a network connection).

A vulnerability type is defined by a combination of attack model (e.g., symlink attack) and the

type of mistake that causes the vulnerability (e.g., the product does not properly check

permissions).

2.2 Inclusion

Inclusion is the process of determining if a bug should be considered a vulnerability, and thus a

candidate for a CVE ID. One criterion for CVE ID assignment is if the exploitation of the bug

provides an attacker with extra privileges, additional information, or the ability to cause a

software fault previously unavailable before they attempted to exploit the bug. This is the first

consideration during inclusion; if a bug satisfies this criterion, it is tested against the following

requirements:

 Publicly Known - The bug is published or divulged publicly (or is scheduled to be

published).

 Publicly Available, Licensed Software - The bug must affect software that is licensed and

made generally available to the public. If the bug only affects a version of software that was

never made generally available to the publisher’s or vendor's customers, the bug should not

be assigned a CVE ID. CVE IDs are not assigned to bugs in malware.

 Installable Software and Libraries - The bug must be present in an installable, distributed

software product or library and not be a site-specific issue. In this case, the meaning of site-

specific is that the bug only affects an online service (software-as-a-service), a specific

website, or only offered through hosting solutions that are under the full control of the

vendor.

 Utilized by U.S. IT Sector – The bug must affect software that can be reasonably assumed

to be used by or will directly affect the U.S. IT Sector, as defined by the Products and

Sources list. [3] For example, U.S. IT Sector software includes English-language versions of

software items that enable commerce and are used by the U.S. Government and industry.

Security tools or software used for security awareness within the U.S. IT Sector are also

included.

2.2.1 Vulnerability Investigation

When researching a reported vulnerability, a balance must be struck between performing CVE

ID assignment in a timely manner, and delaying CVE ID assignment to allow for additional

information gathering to increase the confidence in an assignment decision. Often, vulnerability

disclosers include few details about the vulnerability they identified. If those details are not

sufficient for making a determination, additional research may be required. CNAs should set

limits as to how deeply a vulnerability will be researched. The CVE Team uses a five minute rule

of thumb to limit the investigation time for each piece of missing information. The CNA role is

not to discover vulnerabilities; CNAs exist only to distribute CVE IDs to newly-discovered

vulnerabilities. An organization acting as a CNA may do vulnerability research as part of its

normal business, but it is not part of the CNA role.

At the minimum, analysts need enough information to determine if something is a vulnerability,

if it amounts to more than one vulnerability, and if it affects a product that is in scope for the

CNA in which they work. Also, there must be enough information to determine if a request for a

new CVE ID is for an existing vulnerability already assigned a CVE ID (i.e., a duplicate) or part

of an existing vulnerability that has a CVE ID.

At a minimum, analysts must be able to answer the following questions:

 Is what is reported a vulnerability?

 What are the affected products? Are the products within CVE’s scope or listed on the CVE

Product and Sources lists? [3]

 Is there more than one vulnerability? If so, are they different types of vulnerabilities? Can

each vulnerability be fixed independently, or would a single fix affect all the disclosed

issues?

 Does the vulnerability already have a CVE ID assigned to it? (Is the vulnerability

disclosure a duplicate?)

The CVE Team may conduct additional research to find and document the following details if

they are available:

 Affected software versions

 Specific vulnerability types

4

 Extent/Access vector

 Impact

 Attack vector

 Affected components

 Authentication/privilege requirements

 Acknowledgement from vendor

 Initial disclosure (link to public documentation of disclosure, e.g., mailing list archive)

 Environmental conditions that enable the vulnerability

The CVE Team does not research beyond this set of attributes. This work is done to increase the

confidence that a vulnerability is unique and not duplicated in earlier CVE ID assignments.

Other CNAs may choose to perform up to the CVE Team’s level of research (or more) based on

the resources they have available and the level of comfort they strive for when performing

counting. That said, CNAs are only expected to document the information required to answer the

minimum set of questions, as listed above.

2.3 Vulnerability Categorization and Counting

The fidelity of CVE increases as the confidence about the nature of disclosed vulnerabilities

increases. It is important to determine whether a disclosure describes a bug that involves a single

vulnerability or multiple vulnerabilities. This process is known as counting.

Correctly counting vulnerabilities is important. Correct counting reduces the likelihood of

duplicate CVE IDs being assigned for a single vulnerability. Also, some reports of vulnerabilities

may confuse or conflate multiple, separate software problems, and the counting process

differentiates between unique vulnerabilities.

2.3.1 Categorizing Vulnerabilities for Counting

Specific vulnerability type information is useful when determining the correct number of

vulnerabilities to assign to a reported issue, but it is not required to perform counting.

Vulnerability categorization is not intended to be an official statement about the vulnerability.

The important aspect of vulnerability categorization is understanding when individual

vulnerabilities may be rooted in different software errors. It is more important to know that two

different vulnerabilities are different types, than it is to know specifically what types they are.

The more information that is known, the more confident an analyst would be about their

counting, but some uncertainty in this process is acceptable.

2.3.2 Counting Vulnerabilities

The current method for deciding the number of CVE IDs to assign for a reported vulnerability is:

1. Create separate CVE IDs for separate types of bugs. For example, a buffer overflow

vulnerability should have a different CVE ID than a directory traversal problem.

2. If the same vulnerability of a single type is present in a range of versions for the same

software product, then the vulnerability is assigned only a single CVE ID.

3. If two vulnerabilities have the same vulnerability type and are both present in the same

version of software, create a single CVE ID for the two vulnerabilities referencing that

version of software.

4. If two vulnerabilities in separate software products or versions can be linked to a common

codebase that is shared by those products or versions, a single CVE ID is created for

these vulnerabilities. (The root issue is a single vulnerability, even if it manifests in

multiple software packages or versions.)

5. If none of the above conditions can be determined, create separate CVE IDs for each

reported vulnerability.

If there is a possibility that there are multiple similar bugs as seen through (2), then analysts must

clearly distinguish between them in the CVE ID description. Some rationale used for counting

decisions should be stated in the CVE ID description to allow consumers of CVE to understand

the general nature of the vulnerability and how it relates to other issues with the software,

versions, or codebases.

2.4 Other Considerations

When multiple disclosers independently find what appears to be the same vulnerability, the

reported vulnerabilities receive the same CVE ID if it is clear they are the same vulnerability. If

it is not clear, or if it is clear they discovered different vulnerabilities, the vulnerabilities are each

given a different CVE ID.

If a single discloser makes multiple vulnerability disclosures within 48 hours, the disclosures are

treated as a single disclosure. The number of CVE IDs to assign is determined based on the

established counting rules. This is done to avoid the unnecessary creation of CVE IDs for

individual disclosers. For example, if a single discloser publishes five vulnerabilities over a 24

hour period that affect the same version of the same product and share a vulnerability type, the

vulnerabilities will be assigned a single CVE ID, even though they were disclosed in separate

reports.

3 CVE Counting Simplification
This section proposes a set of changes to the current counting process. Each proposed change

affects a different part of the counting process. They can be implemented individually, as a

whole, or in any other combination. The goal of the changes is to make the counting process

easier to understand and reduce the amount of processing time to create a CVE.

6

3.1 Change 1: Vulnerability Definition

CVE IDs should only be assigned to vulnerabilities, which means that CVE must define what a

vulnerability is, and analysts must ensure that each bug satisfies the definition for vulnerability.

The current definition requires knowledge of the software’s security policy.

3.1.1 Current Definition

A vulnerability is a mistake or design oversight in software that could be used by an attacker to

gain unintended access to a system or network. CVE considers a mistake a vulnerability if it

allows an attacker to use the mistake to violate a reasonable security policy for that system. (This

excludes entirely "open" security policies in which all users are trusted or where there is no

consideration of risk to the system.)

3.1.2 Current Process

A disclosed issue is considered a vulnerability if:

 There is a mistake or design oversight in software reported.

 The mistake or oversight violates the security policy of the system.

3.1.3 Problem

Understanding what the security policy and intended access rules are for a system requires a

great deal of knowledge about a product. This information may be undiscoverable without the

vendor’s cooperation, and, even with the vendor’s cooperation, getting that information will, on

average, add several days to processing time of a CVE ID request.

In addition, behavior that product users feel is a risk may not be considered a risk by the software

vendor. Product users may believe the vulnerability exists and the vendor may insist that it does

not, which confuses and delays CVE ID assignment.

3.1.4 Proposed Change

CNAs can use either the security model definition CVE currently uses, or a claim-based

definition. A claim-based definition is one where a discloser’s claim of a vulnerability with a

negative impact is sufficient. The claim-based definition removes the need to understand the

product’s security model and removes the vendor from the process. Section 3.1.6 describes the

implications of the claim-based model.

3.1.5 Proposed Process

CNAs (including MITRE) can choose to use either the security model definition or the claim-

based definition of a vulnerability.

Security model definition:

 There is a mistake or design oversight in software reported.

 The mistake violates the security policy of the system.

 Claim-based definition:

 A mistake or design oversight in software is reported.

 Someone claims there is a vulnerability, and either:

 The vendor agrees; or

 There is a demonstrated negative impact.

The MITRE CVE Team will operate using the claim-based definition if this model effectively

serves the needs of CVE stakeholders.

3.1.6 Expected Impact

Using the claim-based definition has tradeoffs. Currently, approximately 15 percent of all

MITRE-assigned CVE IDs require investigation into the product’s security model. This

investigation is not performed when using the claim-based definition, significantly decreasing

the time needed to perform assignments. However, a product’s security model is often a balance

between usability and security. There will be instances where someone will claim there is a

vulnerability in a product, but the vendor and the users of the product have already accepted the

risk. For example, many people know that strcpy is a potentially dangerous function and is used

incorrectly in practice, but the security model is such that the user of strcpy is expected to

validate the input before using the function.

Some of the impacts of assigning CVE IDs to vulnerabilities that do not violate the product’s

security model are:

 Security software developers, if they are not subject to specific regulatory requirements,

could waste resources on designing or implementing remediation processes for product

behaviors that are either required for product functionality, or are intentional risk-

management choices.

 Security software owners, if they are subject to specific regulatory requirements such as the

Payment Card Industry Data Security Standard, could face direct economic losses, either by

choosing to remove properly functioning software from their systems, or by choosing to

continue using software despite its association with a spurious CVE ID.

 Vendors could face an increase in support costs along with an increase in the number of CVE

IDs assigned because, during the hours or days following publication of a CVE ID, many

customers would initiate contact to demand a patch or request information about the CVE ID.

 Maintainers of security tools and vulnerability databases would propagate the disputable

CVE ID’s information to their own customers. If these new CVE entries were erroneously

included in the CVE list because of the claim-based definition, this could result in a

substantial increase in the amount of time needed for a spurious CVE ID's negative effects to

be resolved after the issue is better understood (e.g., after the CVE ID is disputed).

8

 CVE IDs assigned to products without regard for their security models can be expected to

result in an increase in disputed CVE IDs, causing confusion as to whether the CVE IDs

cover legitimate vulnerabilities.

3.2 Change 2: The Affected Product Must be Installable Software or an
Installable Library

CVE IDs are assigned to vulnerabilities to ease communication about them. If little to no

communication across multiple stakeholders is required to solve the vulnerability, then a CVE ID

is not required. For example, a vendor needs only to communicate internally to take an action to

mitigate a vulnerability specific to the vendor’s website.

3.2.1 Current Definition

The reported vulnerability must be present in an installable, distributed software product or

library, and not be a site-specific issue. The software in question must be customer-controlled. In

this case, the meaning of site-specific only affects an online service (e.g., a Software-as-a-

Service product), a specific website, or a product only offered through hosting solutions that are

under the full control of the vendor. In these situations, there is no mitigating action, such as

patching, for the end user of the software to take.

3.2.2 Current Process

 If a user can take action to mitigate the vulnerability, then it should get a CVE ID.

 If it is unclear if the user can mitigate the vulnerability, processing of the vulnerability is

delayed until clarity is obtained.

 If only the vendor of the product can take an action to fix the vulnerability, a CVE ID should

not be assigned.

3.2.3 Problem

It has become harder to identify whether a product is vendor maintained or customer maintained.

Many vendors provide cloud-based services, and it is not always clear if they offer a locally-

managed product. Even when there is locally installable software, it is becoming more common

that the software incorporates vendor controlled services.

3.2.4 Proposed Change

CVE IDs will be assigned when there is uncertainty about whether the product is customer

controlled. This will reduce the time needed to process CVE ID requests for vulnerabilities in

products where it is not clear if the customer controls or maintains the software.

3.2.5 Proposed Process

 If a user can take action to mitigate the vulnerability, a CVE ID should be assigned as it is

done now.

 If it is unclear if the user can mitigate the vulnerability, a CVE ID should be assigned.

 If only the vendor of the product can take an action to fix the vulnerability, a CVE ID should

not be assigned, as is currently practiced.

3.2.6 Expected Impact

 The CVE Team estimates that 20 vulnerabilities will no longer be indefinitely delayed until

further evidence is found, which is rarely ever forthcoming.

 In the short term, the benefit of this change will not be significant because of the use of the

Products list. By having a defined list of products, the probability is low that a CNA (e.g., the

CVE Team) will not know if a product is customer controlled. Since vendors are constantly

developing new products and changing their existing products, there will be an increase in

the overall time savings related to this change.

 There will be approximately a five percent increase in the number of CVE IDs that are

rejected because the software is later found to be site-specific.

 CVE IDs are more likely to be assigned to vulnerabilities that the CVE stakeholders would

not typically consider relevant, such as the inadvertent assignment of a CVE ID to a

Software-as-a-Service product. This may result in an inappropriate expenditure of resources

by those who rely on CVE to identify vulnerabilities that require action. For a more thorough

explanation of what the expenditures might be, see the bulleted list in Section 3.1.6.

3.3 Change 3: Using Affected Product to Decide How Many CVE IDs to
Assign

Once the vulnerabilities have been verified as meeting the CVE inclusion requirements, the

number of CVE IDs that should be assigned must be determined. One method used to determine

the number of IDs to assign is to assign a CVE ID to each affected product. This criterion meets

stakeholders’ expectations because the nature of vulnerabilities and their solutions tend to vary

based on the affected product.

3.3.1 Current Definition

CVE ID requests are split into multiple CVE IDs based on the affected product or products.

However, some products share the specific code containing the reported vulnerability. In these

cases, a CVE ID is assigned instead to the shared codebase used by the affected products.

3.3.2 Current Process

When considering how many CVE IDs to assign based only on the affected product or products,

the CVE Team uses the following criteria:

 If the vulnerabilities affect a single product, assign one CVE ID.

10

 If the vulnerabilities share the same affected codebase, such as a library, executable, or third-

party software package that is used by many vendors, then assign a CVE ID to each affected

codebase.

 If the vulnerabilities result from conforming to a design or protocol that has a problem,

assign a single CVE ID.

 If the vulnerabilities are caused by an implementation problem where many products

accidentally make the same mistake, assign a CVE ID to each affected codebase.

3.3.3 Problem

Codebase relationships are often unclear, difficult to investigate, and require analytical judgment

(e.g., how much does a software product have to change to be considered a different codebase?).

Here, too, vendor security models come into play. Referring to the strcpy example, a CNA must

know the expectation for the user is to use strcpy safely to choose the fourth decision in the

current process instead of the third. In many such cases, there are stakeholders advocating for

one or the other decision, and the CNA is put in a position where they must adjudicate the

disagreement.

3.3.4 Proposed Change

The CNA may choose to accept the affected product cited in the initial claim. Also, CVE will

add a decision option to the process to assign CVE IDs when the relationships are unknown or

uncertain.

3.3.5 Proposed Process

 If the initial claim says the vulnerabilities affect a single product, assign one CVE ID.

 If the initial claim says the vulnerabilities share the same affected codebase, assign a CVE ID

to each affected codebase.

 If the codebase relationship is unknown or unclear, assign a CVE ID to each affected

product.

 If the initial claim says the vulnerabilities result from conforming to a design or protocol that

has a problem, assign a single CVE ID.

 If the initial claim says the vulnerabilities are caused by an implementation problem where

many products accidentally make the same mistake, assign a CVE ID to each affected

codebase.

 If it is unclear whether the problem results from a design or protocol, assign a CVE ID to

each affected codebase.

3.3.6 Expected Impact

 Processing time for new CVE IDs will be reduced by up to two percent and CVE ID

assignment will no longer be delayed by research into code relationship concerns.

 The CVE Team estimates that approximately six codebase relationships will be missed each

year because of the lack of investigation. Stakeholders using products with the affected code,

but not the product identified in the CVE entry, will be unaware they are vulnerable. Also,

the number of disclosed vulnerabilities whose codebase relationships are not investigated

may increase due to CVE no longer requiring it. The risk associated with this however, is

low.

 Multiple CVE IDs for the same underlying vulnerability will be assigned when the discloser

does not investigate or specify the code relationships. The multiple IDs will result in the

following:

 Misallocation of resources by CVE users for handling vulnerabilities with which they

have already dealt.

 Additional expenditure of resources to update products when the CVE IDs are merged

and rejected.

3.4 Change 4: Using Independently Fixable Vulnerabilities in Place of
Vulnerability Type to Decide How Many CVE IDs toAassign

Another method currently used to determine the number of CVE IDs to assign is vulnerability

type.

3.4.1 Current Definition

Vulnerability disclosures should be grouped by vulnerability type, and each group should be

given a CVE ID. Vulnerability types are defined by a combination of attack model (e.g., cross-

site scripting) and the type of mistake that causes the vulnerability (e.g., the product does not

properly check permissions).

3.4.2 Current Process

Create separate CVE IDs for separate types of vulnerabilities. For example, a buffer overflow

vulnerability should have a different CVE ID than for a directory traversal vulnerability.

3.4.3 Problem

There are multiple ways to define vulnerability type, such as cause, impact, or attack model. The

security community has not agreed on a single way to define vulnerability types. In addition, the

method CVE currently uses to categorize vulnerability type requires extensive research into, and

understanding of, the precise nature of the problem. This requirement makes identifying the

12

vulnerability type difficult, and many stakeholders are not willing to invest the necessary time

and effort into making this determination.

The concept of “vulnerability type” was useful when the counting practices were created and

little was known about secure software development. For example, at that time, it seemed natural

and useful to combine many buffer overflows into one CVE ID, because the developer had a

single conceptual failure of not considering the possibility of long and invalid input. Today, a

buffer overflow is usually understood in different ways. Buffer overflows can be understood in a

complex way relating to a theory of vulnerability chains or in a simple way as the ultimate

impact of an unrelated coding error.

3.4.4 Proposed Change

Replace the notion of vulnerability types with “distinct finding” or “independently fixable.”

3.4.5 New Process

 If a vulnerability can be fixed independently of the others, assign a CVE ID to it.

 If the vulnerabilities cannot be fixed independently, assign a single CVE ID to the group of

vulnerabilities.

 If it is not clear whether the vulnerabilities can be fixed independently, assign a single CVE

ID to the group of vulnerabilities.

3.4.6 Expected Impact

 Processing time to assign CVE IDs will be reduced by approximately 10 percent. CVE ID

assignment will no longer require investigating the exact type of vulnerability.

 CVE ID requesters will have a better understanding of what is expected of them, as the new

process better conforms to the secure software development practices of today.

 There may be less specific technical information included in CVE ID entries. CVE

consumers would need to seek that information from other sources, which may affect the

utility of CVE for those who may have looked for CVE to provide that kind of information,

such as system or network administrators who begin their research of a CVE entry with the

CVE list.

Acronyms

Acronym Definition

CNA CVE Numbering Authorities

CVE Common Vulnerabilities and Exposures

CVE ID CVE Identification Number

HSSEDI Homeland Security and Systems Engineering Development Institute

IT Information Technology

14

References
[1] http://cve.mitre.org/cve/cna.html

[2] Information Technology Sector-Specific Plan 2010

http://www.dhs.gov/sites/default/files/publications/IT%20Sector%20Specific%20Plan%202010.

pdf

[3] http://cve.mitre.org/cve/data_sources_product_coverage.html

http://www.dhs.gov/sites/default/files/publications/IT%20Sector%20Specific%20Plan%202010.pdf
http://www.dhs.gov/sites/default/files/publications/IT%20Sector%20Specific%20Plan%202010.pdf
http://cve.mitre.org/cve/data_sources_product_coverage.html

